kuhuo
kuhuo
发布于 2024-07-26 / 120 阅读
0
0

Apache Doris + Apache Paimon 快速搭建指南|Lakehouse 使用手册(二)

湖仓一体(Data Lakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求。在过去多个版本中,Apache Doris 持续加深与数据湖的融合,已演进出一套成熟的湖仓一体解决方案。

为便于用户快速入门,我们将通过系列文章介绍 Apache Doris 与各类主流数据湖格式及存储系统的湖仓一体架构搭建指南,包括 Hudi、Iceberg、Paimon、OSS、Delta Lake、Kudu、BigQuery 等。目前,我们已经发布了Apache Doris + Apache Hudi 快速搭建指南|Lakehouse 使用手册(一),通过此文你可了解到在 Docker 环境下,如何快速搭建 Apache Doris + Apache Hudi 的测试及演示环境。

本文我们将再续前言,为大家介绍 Lakehouse 使用手册(二)之 Apache Doris + Apache Paimon 搭建指南。

Apache Doris + Apache Paimon


Apache Paimon 是一种数据湖格式,并创新性地将数据湖格式和 LSM 结构的优势相结合,成功将高效的实时流更新能力引入数据湖架构中,这使得 Paimon 能够实现数据的高效管理和实时分析,为构建实时湖仓架构提供了强大的支撑。

为了充分发挥 Paimon 的能力,提高对 Paimon 数据的查询效率,Apache Doris 对 Paimon 的多项最新特性提供了原生支持:

  • 支持 Hive Metastore、FileSystem 等多种类型的 Paimon Catalog。

  • 原生支持 Paimon 0.6 版本发布的 Primary Key Table Read Optimized 功能。

  • 原生支持 Paimon 0.8 版本发布的 Primary Key Table Deletion Vector 功能。

基于 Apache Doris 的高性能查询引擎和 Apache Paimon 高效的实时流更新能力,用户可以实现:

  • 数据实时入湖:借助 Paimon 的 LSM-Tree 模型,数据入湖的时效性可以降低到分钟级;同时,Paimon 支持包括聚合、去重、部分列更新在内的多种数据更新能力,使得数据流动更加灵活高效。

  • 高性能数据处理分析:Paimon 所提供的 Append Only Table、Read Optimized、Deletion Vector 等技术,可与 Doris 强大的查询引擎对接,实现湖上数据的快速查询及分析响应。

未来 Apache Doris 将会逐步支持包括 Time Travel、增量数据读取在内的 Apache Paimon 更多高级特性,共同构建统一、高性能、实时的湖仓平台。

本文将会再 Docker 环境中,为读者讲解如何快速搭建 Apache Doris + Apache Paimon 测试 & 演示环境,并展示各功能的使用操作。

使用指南


本文涉及脚本&代码从该地址获取:

https://github.com/apache/doris/tree/master/samples/datalake/iceberg_and_paimon

Apache Doris 2.1.5 下载地址:

https://github.com/apache/doris/releases/tag/2.1.5-rc02

01 环境准备

本文示例采用 Docker Compose 部署,组件及版本号如下:

02 环境部署

1. 启动所有组件

bash ./start_all.sh

2. 启动后,可以使用如下脚本,登陆 Flink 命令行或 Doris 命令行:

bash ./start_flink_client.sh
bash ./start_doris_client.sh

03 数据准备

首先登陆 Flink 命令行后,可以看到一张预构建的表。表中已经包含一些数据,我们可以通过 Flink SQL 进行查看。

Flink SQL> use paimon.db_paimon;
[INFO] Execute statement succeed.

Flink SQL> show tables;
+------------+
| table name |
+------------+
|   customer |
+------------+
1 row in set

Flink SQL> show create table customer;
+------------------------------------------------------------------------+
|                                                                 result |
+------------------------------------------------------------------------+
| CREATE TABLE `paimon`.`db_paimon`.`customer` (
  `c_custkey` INT NOT NULL,
  `c_name` VARCHAR(25),
  `c_address` VARCHAR(40),
  `c_nationkey` INT NOT NULL,
  `c_phone` CHAR(15),
  `c_acctbal` DECIMAL(12, 2),
  `c_mktsegment` CHAR(10),
  `c_comment` VARCHAR(117),
  CONSTRAINT `PK_c_custkey_c_nationkey` PRIMARY KEY (`c_custkey`, `c_nationkey`) NOT ENFORCED
) PARTITIONED BY (`c_nationkey`)
WITH (
  'bucket' = '1',
  'path' = 's3://warehouse/wh/db_paimon.db/customer',
  'deletion-vectors.enabled' = 'true'
)
 |
+-------------------------------------------------------------------------+
1 row in set

Flink SQL> desc customer;
+--------------+----------------+-------+-----------------------------+--------+-----------+
|         name |           type |  null |                         key | extras | watermark |
+--------------+----------------+-------+-----------------------------+--------+-----------+
|    c_custkey |            INT | FALSE | PRI(c_custkey, c_nationkey) |        |           |
|       c_name |    VARCHAR(25) |  TRUE |                             |        |           |
|    c_address |    VARCHAR(40) |  TRUE |                             |        |           |
|  c_nationkey |            INT | FALSE | PRI(c_custkey, c_nationkey) |        |           |
|      c_phone |       CHAR(15) |  TRUE |                             |        |           |
|    c_acctbal | DECIMAL(12, 2) |  TRUE |                             |        |           |
| c_mktsegment |       CHAR(10) |  TRUE |                             |        |           |
|    c_comment |   VARCHAR(117) |  TRUE |                             |        |           |
+--------------+----------------+-------+-----------------------------+--------+-----------+
8 rows in set

Flink SQL> select * from customer order by c_custkey limit 4;
+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+
| c_custkey |             c_name |                      c_address | c_nationkey |         c_phone | c_acctbal | c_mktsegment |                      c_comment |
+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+
|         1 | Customer#000000001 |              IVhzIApeRb ot,c,E |          15 | 25-989-741-2988 |    711.56 |     BUILDING | to the even, regular platel... |
|         2 | Customer#000000002 | XSTf4,NCwDVaWNe6tEgvwfmRchLXak |          13 | 23-768-687-3665 |    121.65 |   AUTOMOBILE | l accounts. blithely ironic... |
|         3 | Customer#000000003 |                   MG9kdTD2WBHm |           1 | 11-719-748-3364 |   7498.12 |   AUTOMOBILE |  deposits eat slyly ironic,... |
|        32 | Customer#000000032 | jD2xZzi UmId,DCtNBLXKj9q0Tl... |          15 | 25-430-914-2194 |   3471.53 |     BUILDING | cial ideas. final, furious ... |
+-----------+--------------------+--------------------------------+-------------+-----------------+-----------+--------------+--------------------------------+
4 rows in set

04 数据查询

如下所示,Doris 集群中已经创建了名为paimon的 Catalog(可通过SHOW CATALOGS查看)。以下为该 Catalog 的创建语句:

-- 已创建,无需执行
CREATE CATALOG `paimon` PROPERTIES (
    "type" = "paimon",
    "warehouse" = "s3://warehouse/wh/",
    "s3.endpoint"="http://minio:9000",
    "s3.access_key"="admin",
    "s3.secret_key"="password",
    "s3.region"="us-east-1"
);

你可登录到 Doris 中查询 Paimon 的数据:

mysql> use paimon.db_paimon;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
mysql> show tables;
+---------------------+
| Tables_in_db_paimon |
+---------------------+
| customer            |
+---------------------+
1 row in set (0.00 sec)

mysql> select * from customer order by c_custkey limit 4;
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
| c_custkey | c_name             | c_address                             | c_nationkey | c_phone         | c_acctbal | c_mktsegment | c_comment                                                                                              |
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
|         1 | Customer#000000001 | IVhzIApeRb ot,c,E                     |          15 | 25-989-741-2988 |    711.56 | BUILDING     | to the even, regular platelets. regular, ironic epitaphs nag e                                         |
|         2 | Customer#000000002 | XSTf4,NCwDVaWNe6tEgvwfmRchLXak        |          13 | 23-768-687-3665 |    121.65 | AUTOMOBILE   | l accounts. blithely ironic theodolites integrate boldly: caref                                        |
|         3 | Customer#000000003 | MG9kdTD2WBHm                          |           1 | 11-719-748-3364 |   7498.12 | AUTOMOBILE   |  deposits eat slyly ironic, even instructions. express foxes detect slyly. blithely even accounts abov |
|        32 | Customer#000000032 | jD2xZzi UmId,DCtNBLXKj9q0Tlp2iQ6ZcO3J |          15 | 25-430-914-2194 |   3471.53 | BUILDING     | cial ideas. final, furious requests across the e                                                       |
+-----------+--------------------+---------------------------------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
4 rows in set (1.89 sec)

05 读取增量数据

我们可以通过 Flink SQL 更新 Paimon 表中的数据:

Flink SQL> update customer set c_address='c_address_update' where c_nationkey = 1;
[INFO] Submitting SQL update statement to the cluster...
[INFO] SQL update statement has been successfully submitted to the cluster:
Job ID: ff838b7b778a94396b332b0d93c8f7ac

等 Flink SQL 执行完毕后,在 Doris 中可直接查看到最新的数据:

mysql> select * from customer where c_nationkey=1 limit 2;
+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
| c_custkey | c_name             | c_address       | c_nationkey | c_phone         | c_acctbal | c_mktsegment | c_comment                                                                                              |
+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
|         3 | Customer#000000003 | c_address_update |           1 | 11-719-748-3364 |   7498.12 | AUTOMOBILE   |  deposits eat slyly ironic, even instructions. express foxes detect slyly. blithely even accounts abov |
|       513 | Customer#000000513 | c_address_update |           1 | 11-861-303-6887 |    955.37 | HOUSEHOLD    | press along the quickly regular instructions. regular requests against the carefully ironic s          |
+-----------+--------------------+-----------------+-------------+-----------------+-----------+--------------+--------------------------------------------------------------------------------------------------------+
2 rows in set (0.19 sec)

Benchmark


我们在 Paimon(0.8)版本的 TPCDS 1000 数据集上进行了简单的测试,分别使用了 Apache Doris 2.1.5 版本和 Trino 422 版本,均开启 Primary Key Table Read Optimized 功能。

从测试结果可以看到,Doris 在标准静态测试集上的平均查询性能是 Trino 的 3 -5 倍。后续我们将针对 Deletion Vector 进行优化,进一步提升真实业务场景下的查询效率。

查询优化


对于基线数据来说,Apache Paimon 在 0.6 版本中引入 Primary Key Table Read Optimized 功能后,使得查询引擎可以直接访问底层的 Parquet/ORC 文件,大幅提升了基线数据的读取效率。对于尚未合并的增量数据( INSERT、UPDATE 或 DELETE 所产生的数据增量)来说,可以通过 Merge-on-Read 的方式进行读取。此外,Paimon 在 0.8 版本中还引入的 Deletion Vector 功能,能够进一步提升查询引擎对增量数据的读取效率。

Apache Doris 支持通过原生的 Reader 读取 Deletion Vector 并进行 Merge on Read,我们通过 Doris 的 EXPLAIN 语句,来演示在一个查询中,基线数据和增量数据的查询方式。

mysql> explain verbose select * from customer where c_nationkey < 3;
+------------------------------------------------------------------------------------------------------------------------------------------------+
| Explain String(Nereids Planner)                                                                                                                |
+------------------------------------------------------------------------------------------------------------------------------------------------+
| ...............                                                                                                                                |
|                                                                                                                                                |
|   0:VPAIMON_SCAN_NODE(68)                                                                                                                      |
|      table: customer                                                                                                                           |
|      predicates: (c_nationkey[#3] < 3)                                                                                                         |
|      inputSplitNum=4, totalFileSize=238324, scanRanges=4                                                                                       |
|      partition=3/0                                                                                                                             |
|      backends:                                                                                                                                 |
|        10002                                                                                                                                   |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=1/bucket-0/data-15cee5b7-1bd7-42ca-9314-56d92c62c03b-0.orc start: 0 length: 66600 |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=1/bucket-0/data-5d50255a-2215-4010-b976-d5dc656f3444-0.orc start: 0 length: 44501 |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=2/bucket-0/data-e98fb7ef-ec2b-4ad5-a496-713cb9481d56-0.orc start: 0 length: 64059 |
|          s3://warehouse/wh/db_paimon.db/customer/c_nationkey=0/bucket-0/data-431be05d-50fa-401f-9680-d646757d0f95-0.orc start: 0 length: 63164 |
|      cardinality=18751, numNodes=1                                                                                                             |
|      pushdown agg=NONE                                                                                                                         |
|      paimonNativeReadSplits=4/4                                                                                                                |
|      PaimonSplitStats:                                                                                                                         |
|        SplitStat [type=NATIVE, rowCount=1542, rawFileConvertable=true, hasDeletionVector=true]                                                 |
|        SplitStat [type=NATIVE, rowCount=750, rawFileConvertable=true, hasDeletionVector=false]                                                 |
|        SplitStat [type=NATIVE, rowCount=750, rawFileConvertable=true, hasDeletionVector=false]                                                 |
|      tuple ids: 0
| ...............                                                                                                           |                                                                                                  |
+------------------------------------------------------------------------------------------------------------------------------------------------+
67 rows in set (0.23 sec)

可以看到,对于刚才通过 Flink SQL 更新的表,包含 4 个分片,并且全部分片都可以通过 Native Reader 进行访问(paimonNativeReadSplits=4/4)。并且第一个分片的hasDeletionVector的属性为true,表示该分片有对应的 Deletion Vector,读取时会根据 Deletion Vector 进行数据过滤。

结束语


以上是基于 Apache Doris  与 Apache Paimon 快速搭建测试 / 演示环境的详细指南,后续我们还将陆续推出 Apache Doris 与各类主流数据湖格式及存储系统构建湖仓一体架构的系列指南,包括 Iceberg、OSS、Delta Lake 等,欢迎持续关注。


评论